
NFS µ-HOWTO
for Slackware Linux

Lew Pitcher
lew.pitcher@digitalfreehold.ca

Revision 91, Friday, January 13, 2017

Author's Forward

This document provides a brief summary of the activities necessary to configure
NFS on a Linux system. In writing this document, I assume that you have already
read the "NFS Howto" (at http://tldp.org/HOWTO/NFS-HOWTO/index.html or
/usr/doc/Linux-HOWTOs/NFS-HOWTO) and are familiar with Network File System
terminology and requisites. This document is not a primer on NFS; it is a cheat-
sheet summary, biased to Slackware, for those who know NFS, but do not
configure it often.

Overview

There are two systems involved:
• the server provides the storage space, and exports it to clients over the

network
• the client mounts the server's exported storage space, so that it occupies

part of the client's filesystem tree.

On the server:
• Set up /etc/exports to name server directories to be exported to NFS

clients. See exports(5) for format
• Set up /etc/hosts.allow to designate client systems permitted to access

NFS exports. See hosts_access(5) for format
• Set up /etc/hosts.deny to designate systems not permitted to access NFS

exports. See hosts_access(5) for format
• Start the server-side NFS services. On Slackware, you can run

/etc/rc.d/rc.nfsd start

(which is usually started via /etc/rc.d/rc.inet2)

On the client:
• wait until all the server's NFS services are started
• start the client-side NFS services. On Slackware, you can run

/etc/rc.d/rc.rpc start
(which is usually started via /etc/rc.d/rc.inet2)

• mount remote NFS filesystem(s) to local mount-point(s). See mount(8) for
format

• optionally, edit /etc/fstab to add NFS mounts. See fstab(5) and nfs(5) for
format

Security:

• Unless specifically configured otherwise, the server will use the client
UID/GID in file access requests. To avoid problems, ensure that the client
UIDs and GIDs match the server UIDs and GIDs. This may require that

Page 2 Revision 91

http://tldp.org/HOWTO/NFS-HOWTO/index.html

client and server /etc/passwd entries match, for users using NFS, or the use
of NIS to serve network-wide consistent UIDs.

• Client UID 0 / GID 0 is a special case. Normally, the server maps the client
"root" user to a known, unprivileged user. You change this on the server
/etc/exports side.

• Read the exports(5) "User ID Mapping" section for details on how UID and
GID are handled; look for the root_squash / no_root_squash / all_squash
options to /etc/exports

NFS Server-side Configuration

/etc/exports

exports(5) says:

Each line contains an export point and a whitespace-separated list of clients
allowed to mount the file system at that point. Each listed client may be
immediately followed by a parenthesized, comma-separated list of export options
for that client. No whitespace is permitted between a client and its option
list.

Also, each line may have one or more specifications for default options after
the path name, in the form of a dash ("-") followed by an option list. The
option list is used for all subsequent exports on that line only.

Blank lines are ignored. A pound sign ("#") introduces a comment to the end of
the line. Entries may be continued across newlines using a backslash. If an
export name contains spaces it should be quoted using double quotes. You can
also specify spaces or other unusual character in the export name using a
backslash followed by the character code as three octal digits.

The 'export point' named in the server's /etc/exports file will be the fully-qualified
pathname to a server-side directory that the server wishes to make accessible to
one or more NFS clients.

The client system named in the /etc/exports file can be one of
• a single IP address

eg: 192.169.0.5
• a range of IP addresses specified in net-address/netmask format

eg: 192.168.0.0/24
• a single hostname, such as an abbreviated name recognized by the

resolver, or a fully-qualified domain name
eg: guest
eg: guest.this.lan

• a "wildcard" domain name, which is a node name containing the wildcard
characters '*' and/or '?'
eg: *.this.lan (matches all .this.lan hosts)

Page 3 Revision 91

eg: gues?.this.lan (matches guest.this.lan and guess.this.lan)

A simple /etc/exports example:

/home/guest guest.this.lan(rw,sync)

which exports the server's /home/guest subdirectory to the client system named
guest.this.lan. The server will grant both read and write requests from the client
(rw), and will reply to the client only after the changes have been committed to
stable storage (sync).

Multiple clients (and their applicable options) can be given in one /etc/exports
entry:

/home/guest guest.this.lan(rw,sync) guess.this.lan(ro)

Options may include:

• secure "requests originate on an Internet port less than IPPORT_RESERVED
(1024). This option is on by default. To turn it off, specify insecure".

• rw will "allow both read and write requests on this NFS volume. The default is to
disallow any request which changes the filesystem. This can also be made explicit
by using the ro option".

• sync will cause NFS to "reply to requests only after the changes have been
committed to stable storage".

• root_squash will "map requests from uid/gid 0 to the anonymous uid/gid. Note
that this does not apply to any other uids or gids that might be equally sensitive,
such as user bin or group staff".

• no_subtree_check "disables subtree checking, which has mild security
implications, but can improve reliability in some circumstances. As a general
guide, a home directory filesystem, which is normally exported at the root and
may see lots of file renames, should be exported with subtree checking disabled.
A filesystem which is mostly readonly, and at least doesn't see many file renames
(e.g. /usr or /var) and for which subdirectories may be exported, should
probably be exported with subtree checks enabled. The default of having subtree
checks enabled, can be explicitly requested with subtree_check".

/etc/hosts.deny & /etc/hosts.allow

When servicing client requests, the NFS server first looks through
/etc/hosts.allow for a rule that permits that specific client to access the NFS
services. If NFS finds a matching rule here, the NFS server permits the client
access to the NFS resource.

However, if no such "allow" rule is found in /etc/hosts.allow, the NFS server
looks through /etc/hosts.deny for a rule that denies that specific client from

Page 4 Revision 91

access to NFS. If NFS finds a matching rule here, the NFS server denies the
client access to the NFS resource; if no "deny" rule is found, then the NFS server
grants the client access to the resource.

A typical installation configures /etc/hosts.deny to deny services to ALL hosts,
and configures /etc/hosts.allow with specific exceptions to the blanket rule.

Example /etc/hosts.allow
Only permit hosts on local network (192.168.1.0 - 192.168.1.255) access to NFS
portmap: 192.168.1.
lockd: 192.168.1.
mountd: 192.168.1.
rquotad: 192.168.1.
statd: 192.168.1.

Example /etc/hosts.deny
Deny access to NFS services to all hosts, except for those explicitly permitted by hosts.allow
portmap:ALL
lockd:ALL
mountd:ALL
rquotad:ALL
statd:ALL

Server-side daemons
1. Start the common RPC portmap and statd services.

1. /sbin/rpc.portmap
2. /sbin/rpc.statd

2. Start the NFS server daemons
1. Load the nfsd.ko kernel module and mount the nfsd filesystem

/sbin/modprobe nfsd
/sbin/mount -t nfsd nfsd /proc/fs/nfs

2. Re-export all exported directories, to sync /var/lib/nfs/etab with
/etc/exports
/usr/sbin/exportfs -r

3. Start the RPC Remote Quota Server Daemon
/usr/sbin.rpc.rquotad

4. Start the Network File Server Daemon, with 8 NFS server threads
/usr/sbin.rpc.nfsd 8

5. Start the NFS Mount Daemon
/usr/sbin.rpc.mountd

Slackware Notes:

On Slackware, the portmap and statd services run from /etc/rc.d/rc.rpc
start (which is executed by /etc/rc.d/rc.inet2). However, the preparatory
mount of /proc/fs/nfs and the export of exported directories, along with the
launching of the NFS server daemons rpc.quotad, rpc.nfsd, and rpc.mountd,

Page 5 Revision 91

run from /etc/rc.d/rc.nfsd start, which is also executed by /etc/rc.d/rc.inet2.

1. To prepare initscripts for execution:
chmod u+x /etc/rc.d/rc.rpc
chmod u+x /etc/rc.d/rc.nfsd

2. To manually start the initscripts on an already booted system:
cd / ; /etc/rc.d/rc.rpc
cd / ; /etc/rc.d/rc.nfsd

NFS Client-side Configuration

Client-side daemons
Start the common RPC portmap and statd services.

1. /sbin/rpc.portmap
2. /sbin/rpc.statd

Slackware Notes:

On Slackware, the portmap and statd services run from /etc/rc.d/rc.rpc start
(which is executed by /etc/rc.d/rc.inet2).

1. To prepare the initscript for execution:
chmod u+x /etc/rc.d/rc.rpc

2. To manually start the initscript on an already booted system:
cd / ; /etc/rc.d/rc.rpc start

Client-side Mounts
Like filesystems on local storage devices, you mount NFS exported filesystems
onto local mount-points before you use them. You need

1. a local mount-point; a directory over which you will mount the NFS
filesystem,

2. the fully-qualified domain name of the NFS server, and
3. the full path of the filesystem exported by the NFS server
4. permission to mount filesystems

First, ensure that the local mount-point exists, and create it if it doesn't
[-d /some/local/directory] || mkdir -p /some/local/directory

Next, mount the NFS remote filesystem on that local mount-point
mount -t nfs nfs.server.name:/path/to/exported/filesystem /some/local/directory

Optionally, you can build an entry in /etc/fstab to perform the mount as the
system starts (run by /etc/rc.d/rc.M)

nfs.server.name:/path/to/exported/filesystem /some/local/directory nfs defaults

Once the NFS filesystem is mounted on the client system, it will appear to the
client as any other local filesystem. Note that this means that the local filesystem
will treat file ownership and permissions on the NFS volume the same way it

Page 6 Revision 91

would on any other local filesystem, including the testing and assignment of file
UIDs and GIDs. Systems using NFS must either synchronize their UID/GID
assignments, or ensure through other means that file ownership issues are
accounted for.

Page 7 Revision 91

